Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 289: 121764, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067565

RESUMO

Peripheral nerve innervation is essential for regulating tissue repair and regeneration. MAA-based biomaterials have been previously shown to promote angiogenesis. Here we show a new role for MAA-based biomaterials in promoting terminal axon nerve growth. Our results demonstrate that MAA-based biomaterials promote peripheral nerve growth in an Igf-1 and Shh dependent manner. The resulting nerves increased the sensitivity of treated mice paws to nociception. iDISCO clearing showed that MAA increased the presence of peripheral nerve structures in whole explants. MAA was also able to increase the expression of key neuronal markers and growth factors in a peripheral neuropathy model, the diabetic db/db mouse, suggesting that MAA-based biomaterials may be relevant to treatment of peripheral neuropathy. Moreover, in a peripheral neuropathy model, MAA was able to up-regulate the expression of growth factors for an extended duration suggesting MAA may prevent degeneration through an effect on factors that promote survival. As all tissues are innervated, MAA-based biomaterials could have broad applications in the promoting regeneration and preventing degeneration of peripheral nerves.


Assuntos
Materiais Biocompatíveis , Fator de Crescimento Insulin-Like I , Animais , Materiais Biocompatíveis/química , Metacrilatos , Camundongos , Regeneração Nervosa , Cicatrização
2.
Dev Cell ; 52(4): 509-524.e9, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31902657

RESUMO

Here, we investigate the origin and nature of blastema cells that regenerate the adult murine digit tip. We show that Pdgfra-expressing mesenchymal cells in uninjured digits establish the regenerative blastema and are essential for regeneration. Single-cell profiling shows that the mesenchymal blastema cells are distinct from both uninjured digit and embryonic limb or digit Pdgfra-positive cells. This unique blastema state is environmentally determined; dermal fibroblasts transplanted into the regenerative, but not non-regenerative, digit express blastema-state genes and contribute to bone regeneration. Moreover, lineage tracing with single-cell profiling indicates that endogenous osteoblasts or osteocytes acquire a blastema mesenchymal transcriptional state and contribute to both dermis and bone regeneration. Thus, mammalian digit tip regeneration occurs via a distinct adult mechanism where the regenerative environment promotes acquisition of a blastema state that enables cells from tissues such as bone to contribute to the regeneration of other mesenchymal tissues such as the dermis.


Assuntos
Diferenciação Celular , Extremidades/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/citologia , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Regeneração , Animais , Linhagem da Célula , Células Cultivadas , Extremidades/embriologia , Extremidades/lesões , Feminino , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Análise de Célula Única , Transcriptoma
3.
Front Mol Neurosci ; 11: 242, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30135642

RESUMO

Sensory processing dysfunction (SPD) is present in most patients with intellectual disability (ID) and autism spectrum disorder (ASD). Silencing expression of the Fragile X mental retardation 1 (FMR1) gene leads to Fragile X syndrome (FXS), the most common single gene cause of ID and ASD. Drosophila have a highly conserved FMR1 ortholog, dfmr1. dfmr1 mutants display cognitive and social defects reminiscent of symptoms seen in individuals with FXS. We utilized a robust behavioral assay for sensory processing of the Drosophila stress odorant (dSO) to gain a better understanding of the molecular basis of SPD in FXS. Here, we show that dfmr1 mutant flies present significant defects in dSO response. We found that dfmr1 expression in mushroom bodies is required for dSO processing. We also show that cyclic adenosine monophosphate (cAMP) signaling via PKA is activated after exposure to dSO and that several drugs regulating both cAMP and cyclic guanosine monophosphate (cGMP) levels significantly improved defects in dSO processing in dfmr1 mutant flies.

5.
Am J Hum Genet ; 98(5): 1038-1046, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153400

RESUMO

Hereditary spastic paraplegia (HSP) is a genetically and clinically heterogeneous disease characterized by spasticity and weakness of the lower limbs with or without additional neurological symptoms. Although more than 70 genes and genetic loci have been implicated in HSP, many families remain genetically undiagnosed, suggesting that other genetic causes of HSP are still to be identified. HSP can be inherited in an autosomal-dominant, autosomal-recessive, or X-linked manner. In the current study, we performed whole-exome sequencing to analyze a total of nine affected individuals in three families with autosomal-recessive HSP. Rare homozygous and compound-heterozygous nonsense, missense, frameshift, and splice-site mutations in CAPN1 were identified in all affected individuals, and sequencing in additional family members confirmed the segregation of these mutations with the disease (spastic paraplegia 76 [SPG76]). CAPN1 encodes calpain 1, a protease that is widely present in the CNS. Calpain 1 is involved in synaptic plasticity, synaptic restructuring, and axon maturation and maintenance. Three models of calpain 1 deficiency were further studied. In Caenorhabditis elegans, loss of calpain 1 function resulted in neuronal and axonal dysfunction and degeneration. Similarly, loss-of-function of the Drosophila melanogaster ortholog calpain B caused locomotor defects and axonal anomalies. Knockdown of calpain 1a, a CAPN1 ortholog in Danio rerio, resulted in abnormal branchiomotor neuron migration and disorganized acetylated-tubulin axonal networks in the brain. The identification of mutations in CAPN1 in HSP expands our understanding of the disease causes and potential mechanisms.


Assuntos
Axônios/patologia , Calpaína/genética , Predisposição Genética para Doença/genética , Neurônios Motores/patologia , Paraplegia Espástica Hereditária/genética , Adulto , Animais , Encéfalo/fisiologia , Caenorhabditis elegans/genética , Movimento Celular/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Feminino , Humanos , Masculino , Neurônios Motores/citologia , Adulto Jovem , Peixe-Zebra/genética
6.
Hum Mol Genet ; 25(6): 1088-99, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26744324

RESUMO

Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative diseases causing progressive gait dysfunction. Over 50 genes have now been associated with HSP. Despite the recent explosion in genetic knowledge, HSP remains without pharmacological treatment. Loss-of-function mutation of the SPAST gene, also known as SPG4, is the most common cause of HSP in patients. SPAST is conserved across animal species and regulates microtubule dynamics. Recent studies have shown that it also modulates endoplasmic reticulum (ER) stress. Here, utilizing null SPAST homologues in C. elegans, Drosophila and zebrafish, we tested FDA-approved compounds known to modulate ER stress in order to ameliorate locomotor phenotypes associated with HSP. We found that locomotor defects found in all of our spastin models could be partially rescued by phenazine, methylene blue, N-acetyl-cysteine, guanabenz and salubrinal. In addition, we show that established biomarkers of ER stress levels correlated with improved locomotor activity upon treatment across model organisms. Our results provide insights into biomarkers and novel therapeutic avenues for HSP.


Assuntos
Modelos Animais de Doenças , Paraplegia Espástica Hereditária/tratamento farmacológico , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans , Drosophila , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Feminino , Humanos , Locomoção/efeitos dos fármacos , Locomoção/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mutação , Fenazinas/farmacologia , Fenótipo , Paraplegia Espástica Hereditária/genética , Peixe-Zebra
7.
J Vis Exp ; (100): e52741, 2015 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-26132637

RESUMO

Locomotive defects resulting from neurodegenerative disorders can be a late onset symptom of disease, following years of subclinical degeneration, and thus current therapeutic treatment strategies are not curative. Through the use of whole exome sequencing, an increasing number of genes have been identified to play a role in human locomotion. Despite identifying these genes, it is not known how these genes are crucial to normal locomotive functioning. Therefore, a reliable assay, which utilizes model organisms to elucidate the role of these genes in order to identify novel targets of therapeutic interest, is needed more than ever. We have designed a sensitized version of the negative geotaxis assay that allows for the detection of milder defects earlier and has the ability to evaluate these defects over time. The assay is performed in a glass graduated cylinder, which is sealed with a wax barrier film. By increasing the threshold distance to be climbed to 17.5 cm and increasing the experiment duration to 2 min we have observed a greater sensitivity in detecting mild mobility dysfunctions. The assay is cost effective and does not require extensive training to obtain highly reproducible results. This makes it an excellent technique for screening candidate drugs in Drosophila mutants with locomotion defects.


Assuntos
Modelos Animais de Doenças , Locomoção/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Comportamento Animal/fisiologia , Drosophila melanogaster
8.
Front Psychiatry ; 6: 85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26089803

RESUMO

Intellectual disability (ID), previously known as mental retardation, affects 3% of the population and remains without pharmacological treatment. ID is characterized by impaired general mental abilities associated with defects in adaptive function in which onset occurs before 18 years of age. Genetic factors are increasing and being recognized as the causes of severe ID due to increased use of genome-wide screening tools. Unfortunately drug discovery for treatment of ID has not followed the same pace as gene discovery, leaving clinicians, patients, and families without the ability to ameliorate symptoms. Despite this, several model organisms have proven valuable in developing and screening candidate drugs. One such model organism is the fruit fly Drosophila. First, we review the current understanding of memory in human and its model in Drosophila. Second, we describe key signaling pathways involved in ID and memory such as the cyclic adenosine 3',5'-monophosphate (cAMP)-cAMP response element binding protein (CREB) pathway, the regulation of protein synthesis, the role of receptors and anchoring proteins, the role of neuronal proliferation, and finally the role of neurotransmitters. Third, we characterize the types of memory defects found in patients with ID. Finally, we discuss how important insights gained from Drosophila learning and memory could be translated in clinical research to lead to better treatment development.

9.
Artigo em Inglês | MEDLINE | ID: mdl-25805973

RESUMO

Memory formation has been shown recently to be dependent on energy status in Drosophila. A well-established energy sensor is the insulin signaling (InS) pathway. Previous studies in various animal models including human have revealed the role of insulin levels in short-term memory but its role in long-term memory remains less clear. We therefore investigated genetically the spatial and temporal role of InS using the olfactory learning and long-term memory model in Drosophila. We found that InS is involved in both learning and memory. InS in the mushroom body is required for learning and long-term memory whereas long-term memory specifically is impaired after InS signaling disruption in the ellipsoid body, where it regulates the level of p70s6k, a downstream target of InS and a marker of protein synthesis. Finally, we show also that InS is acutely required for long-term memory formation in adult flies.


Assuntos
Insulina/metabolismo , Memória de Longo Prazo/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Imuno-Histoquímica , Aprendizagem/fisiologia , Modelos Animais , Corpos Pedunculados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...